Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.633
Filtrar
1.
J Appl Genet ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568414

RESUMO

A potential application of single nucleotide polymorphisms (SNPs) in animal husbandry and production is identification of the animal breed. In this study, using chosen marker selection methods and genotypic data obtained with the use of Illumina Bovine SNP50 BeadChip for individuals belonging to ten cattle breeds, the reduced panels containing the most informative SNP markers were developed. The suitability of selected SNP panels for the effective and reliable assignment of the studied individuals to the breed of origin was checked by three allocation algorithms implemented in GeneClass 2. The studied breeds set included both Polish-native breeds under the genetic resources conservation programs and highly productive breeds with a global range. For all of the tested marker selection methods ("delta" and two FST-based variants), two separate methodological approaches of marker assortment were used and three marker panels were created with 96, 192, and 288 SNPs respectively, to determine the minimum number of markers required for effective differentiation of the studied breeds. Moreover, the usefulness of the most effective panels of markers to assess the population structure and genetic diversity of the analyzed breeds was examined. The conducted analyses showed the possibility of using SNP subsets from medium-density genotypic microarrays to distinguish breeds of cattle kept in Poland and to analyze their genetic structure.

2.
Anim Biosci ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575127

RESUMO

Objective: As a charismatic species, cashmere goats have rich genetic resources. In the Inner Mongolia Autonomous Region, there are three cashmere goat varieties named and approved by the state. These goats are renowned for their high cashmere production and superior cashmere quality. Therefore, it is vitally important to protect their genetic resources as they will serve as breeding material for developing new varieties in the future. Methods: Three breeds including Inner Mongolia cashmere goats (IMCG), Hanshan White cashmere goats (HS), and Ujimqin white cashmere goats (WZMQ) were studied. IMCG were of three types: Aerbas (ARBS), Erlangshan (ELS) and Alashan (ALS). Nine DNA samples were collected for each population, and they were genomically re-sequenced to obtain high-depth data. The genetic diversity parameters of each population were estimated to determine selection intensity. Principal component analysis, phylogenetic tree construction and genetic differentiation parameter estimation were performed to determine genetic relationships among populations. Results: Samples from the 45 individuals from the five goat populations were sequenced, and 30,601,671 raw SNPs obtained. Then, variant calling was conducted using the reference genome, and 17,214,526 SNPs were retained after quality control. Individual sequencing depth of individuals ranged from 21.13X to 46.18X, with an average of 28.5X. In the ARBS, locus polymorphism (79.28) and expected heterozygosity (0.2554) proportions were the lowest, and the homologous consistency ratio (0.1021) and average inbreeding coefficient (0.1348) were the highest, indicating that this population had strong selection intensity. Conversely, ALS and WZMQ selection intensity was relatively low. Genetic distance between HS and the other four populations was relatively high, and genetic exchange existed among the other four populations. Conclusion: s: The Inner Mongolia cashmere goat (ARBS type) population has a relatively high selection intensity and a low genetic diversity. The IMCG (ALS type) and WZMQ populations had relatively low selection intensity and high genetic diversity. The genetic distance between HS and the other four populations was relatively high, with a moderate degree of differentiation. Overall, these genetic variations provide a solid foundation for resource identification of Inner Mongolia Autonomous Region cashmere goats in the future.

3.
Front Plant Sci ; 15: 1341996, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567137

RESUMO

Introduction: The rhizomes of Coptis plants have been used in traditional Chinese medicine over 2000 years. Due to increasing market demand, the overexploitation of wild populations, habitat degradation and indiscriminate artificial cultivation of Coptis species have severely damaged the native germplasms of species in China. Methods: Genome-wide simple-sequence repeat (SSR) markers were developed using the genomic data of C. chinensis. Population genetic diversity and structure of 345 Coptis accessions collected from 32 different populations were performed based on these SSRs. The distribution of suitable areas for three taxa in China was predicted and the effects of environmental variables on genetic diversity in relation to different population distributions were further analyzed. Results: 22 primer pairs were selected as clear, stable, and polymorphic SSR markers. These had an average of 16.41 alleles and an average polymorphism information content (PIC) value of 0.664. In the neighbor-joining (N-J) clustering analysis, the 345 individuals clustered into three groups, with C. chinensis, C. chinensis var. brevisepala and C. teeta being clearly separated. All C. chinensis accessions were further divided into four subgroups in the population structure analysis. The predicted distributions of suitable areas and the environmental variables shaping these distributions varied considerably among the three species. Discussion: Overall, the amount of solar radiation, precipitation and altitude were the most important environmental variables influencing the distribution and genetic variation of three species. The findings will provide key information to guide the conservation of genetic resources and construction of a core reserve for species.

4.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612732

RESUMO

Yellow catfish Tachysurus fulvidraco is an important commercial fish species in South Korea. However, due to their current declines in its distribution area and population size, it is being released from hatchery populations into wild populations. Hatchery populations also produced from wild broodstocks are used for its captive breeding. We reported 15 new microsatellite DNA markers of T. fulvidraco to identify the genetic diversity and structure of its hatchery and wild populations, providing baseline data for useful resource development strategies. The observed heterozygosity of the hatchery populations ranged from 0.816 to 0.873, and that of the wild populations ranged from 0.771 to 0.840. Their inbreeding coefficient ranged from -0.078 to 0.024. All populations experienced a bottleneck (p < 0.05), with effective population sizes ranging from 21 to infinity. Their gene structure was divided into two groups with STRUCTURE results of K = 2. It was confirmed that each hatchery population originated from a different wild population. This study provides genetic information necessary for the future development and conservation of fishery resources for T. fulvidraco.


Assuntos
Peixes-Gato , Animais , Peixes-Gato/genética , República da Coreia , Densidade Demográfica , Pesqueiros , Repetições de Microssatélites/genética
5.
R Soc Open Sci ; 11(4): 230895, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38601035

RESUMO

The reef manta ray Mobula alfredi is present throughout most island groups that form the Raja Ampat archipelago, Indonesia. The species is protected regionally and nationally and is currently managed as a single homogeneous population within the 6.7 million ha archipelago. However, scientific evidence is currently lacking regarding the spatial connectivity and population structure of M. alfredi within this archipelago. Using network analysis and an array of 34 acoustic receivers deployed throughout Raja Ampat between February 2016 and September 2021, we examined the movements of 72 subadult and adult M. alfredi tagged in seven regions of Raja Ampat. A total of 1094 M. alfredi movements were recorded and were primarily concentrated between nearby receiver stations, highlighting frequent local movements within, and limited long-distance movements between regional acoustic receiver arrays. Network analysis revealed highly connected nodes acting as hubs important for M. alfredi movements. A community detection algorithm further indicated clusters within the network. Our results suggest the existence of a metapopulation comprising three demographically and geographically distinct subpopulations within the archipelago. They also reveal the importance of Eagle Rock as a critical node in the M. alfredi movement network, justifying the urgent inclusion of this site within the Raja Ampat marine protected area network.

6.
Sci Total Environ ; 927: 172077, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569955

RESUMO

Human activities affect terrestrial and aquatic habitats leading to changes at both individual and population levels in wild animal species. In this study, we investigated the phenotype and demographics of the Mediterranean pond turtle Mauremys leprosa (Schweigger, 1812) in contrasted environments of Southern France: two peri-urban rivers receiving effluents from wastewater treatment plants (WWTP), and another one without sewage treatment plant. Our findings revealed the presence of pesticides and pharmaceuticals in the three rivers of investigation, the highest diversities and concentrations of pollutants being found in the river subsections impacted by WWTP effluents. Principal component analysis and hierarchical clustering identified three levels of habitat quality, with different pollutant concentrations, thermal conditions, nutrient, and organic matter levels. The highest turtle densities, growth rates, and body sizes were estimated in the most disturbed habitats, suggesting potential adult benefits derived from harsh environmental conditions induced by pollution and eutrophication. Conversely, juveniles were the most abundant in the least polluted habitats, suggesting adverse effects of pollution on juvenile survival or adult reproduction. This study suggests that turtles living in polluted habitats may benefit from enhanced growth and body size, at the expense of reproductive success.


Assuntos
Ecossistema , Monitoramento Ambiental , Tartarugas , Poluentes Químicos da Água , Animais , Tartarugas/fisiologia , França , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Lagoas
7.
Plants (Basel) ; 13(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38611476

RESUMO

To explore the population structures and dynamics of Rhododendron shrub communities at different stages of succession in northwest Guizhou, China, this study examined the populations of Rhododendron annae and Rhododendron irroratum shrub with two different stages. A space-for-time substitution was employed to establish the diameter class/height structures, static life tables, and survival/mortality rate/disappearance rate curves of both Rhododendron populations with different orders of succession. Their structural and quantitative dynamics were analyzed, and their development trends were predicted. The results showed that, quantitatively, the populations of R. annae and R. irroratum in the two Rhododendron communities with different orders of succession were dominated by age classes one, two, and three as well as height classes i, ii, and iii. The number of Rhododendron plants at the three age classes and the three height classes accounted for 97.61-100% of the total. The quantitative dynamic indices of R. annae and R. irroratum were both greater than 0, with and without considering external interference. In terms of age class and height structures, both Rhododendron populations were expanding populations, presenting "inverted-J-shaped" and irregular pyramid patterns. There was a sufficient number of young individuals, but few or no old individuals. Both survival curves of the populations of R. annae and R. irroratum in the two Rhododendron communities with different orders of succession belonged to the Deevy-II type. In the late stage of succession, the mortality curves and disappearance curves of both Rhododendron populations in these communities presented a trend of increasing first and then decreasing with increasing age class. This result indicates that at each age class, R. annae and R. irroratum showed a trend of gradual increase after two, four, and six years. In brief, the populations of R. annae and R. irroratum have rich reserves of seedlings and saplings, but high mortality and disappearance rates. In this context, it is necessary to reduce human interference and implement targeted conservation measures to promote the natural renewal of Rhododendron populations.

8.
Plants (Basel) ; 13(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38592835

RESUMO

Maize (Zea mays L.) is an important cereal and is affected by climate change. Therefore, the production of climate-smart maize is urgently needed by preserving diverse genetic backgrounds through the exploration of their genetic diversity. To achieve this, 96 maize inbred lines were used to screen for phenotypic yield-associated traits and grain quality parameters. These traits were studied across two different environments (Anand and Godhra) and polymorphic simple sequence repeat (SSR) markers were employed to investigate the genetic diversity, population structure, and trait-linked association. Genotype-environment interaction (GEI) reveals that most of the phenotypic traits were governed by the genotype itself across the environments, except for plant and ear height, which largely interact with the environment. The genotypic correlation was found to be positive and significant among protein, lysine and tryptophan content. Similarly, yield-attributing traits like ear girth, kernel rows ear-1, kernels row-1 and number of kernels ear-1 were strongly correlated to each other. Pair-wise genetic distance ranged from 0.0983 (1820194/T1 and 1820192/4-20) to 0.7377 (IGI-1101 and 1820168/T1). The SSRs can discriminate the maize population into three distinct groups and shortlisted two genotypes (IGI-1101 and 1820168/T1) as highly diverse lines. Out of the studied 136 SSRs, 61 were polymorphic to amplify a total of 131 alleles (2-3 per loci) with 0.46 average gene diversity. The Polymorphism Information Content (PIC) ranged from 0.24 (umc1578) to 0.58 (umc2252). Similarly, population structure analysis revealed three distinct groups with 19.79% admixture among the genotypes. Genome-wide scanning through a mixed linear model identifies the stable association of the markers umc2038, umc2050 and umc2296 with protein, umc2296 and umc2252 with tryptophan, and umc1535 and umc1303 with total soluble sugar. The obtained maize lines and SSRs can be utilized in future maize breeding programs in relation to other trait characterizations, developments, and subsequent molecular breeding performances for trait introgression into elite genotypes.

9.
Mol Breed ; 44(4): 30, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38634111

RESUMO

The gene-derived functional markers are considered effective to use in marker-assisted breeding and genetic diversity analysis. As of now, no functional markers have been identified from miRNAs regulating yield traits. The miRNAs play a key role as regulators in controlling the candidate genes involved in grain yield improvement in rice. In this study, 13 miRNA-SSR and their target gene SSR markers were mined from 29 yield-responsive miRNA along with their 29 target genes in rice. The validation of these markers showed that four miRNA-SSRs and one target gene SSR markers had shown polymorphism among 120 diverse rice genotypes. The PIC values ranged from 0.25 (OsARF18-SSR) to 0.72 (miR408-SSR, miR172b-SSR, and miR396f-SSR) with an average value of 0.57. These polymorphic markers grouped 120 rice genotypes into 3 main clusters based on the levels of high genetic diversity. These markers also showed significant association with key yield traits. Among all, miR172b-SSR showed a strong association with plant height in two seasons. This investigation suggests that this new class of molecular markers has great potential in the characterization of rice germplasm by genetic diversity and population structure and in marker-assisted breeding for the development of high-yielding varieties. Supplementary information: The online version contains supplementary material available at 10.1007/s11032-024-01462-z.

10.
Forensic Sci Res ; 9(2): owad058, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38651135

RESUMO

Short tandem repeats (STRs) are the most common genetic markers in forensic and human population genetics due to their high polymorphism, rapid detection, and reliable genotyping. To adapt the rapid growth of forensic DNA database and solve problems in disputed cases, a panel of 23 autosomal STR loci with high discriminating ability was constructed recently. The Tai-Kadai-speaking Gelao is the most ancient indigenous minority in Guizhou province, however, the forensic efficiency and population genetic structure remain poorly explored. Here, 490 Guizhou Gelao individuals from Southwest China were genotyped with the panel of 23 STRs using the Huaxia Platinum Kit. A total of 265 alleles were screened. The combined discrimination power and the combined probability of paternity were 0.9999 and 0.9999, respectively. This indicated the 23 loci had higher discrimination power in Guizhou Gelao and could be applied to forensic practice. Comprehensive population structures with reference populations from China and abroad using the neighbour-joining phylogenetic tree (N-J tree), multidimensional scaling, principal component analysis and heatmap demonstrated that Guizhou Gelao was genetically closer to Guizhou Han than other populations. Moreover, our results showed that a complex phylogenetic model was influenced by ethnic, geographic, and linguistic factors. Key points: The first batch of genetic data for 23 autosomal STRs in 490 Geolao individuals from Guizhou was provided.The 23 STR panel can afford high genetic polymorphisms and discrimination power and can be efficiently applied to forensic practice in Guizhou Gelao population.A complex phylogenetic model influenced by ethnic, geographic, and linguistic factors was uncovered.

11.
G3 (Bethesda) ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626295

RESUMO

The mosquito Aedes aegypti is the primary vector of many human arboviruses such as dengue, yellow fever, chikungunya and Zika, which affect millions of people world-wide. Population genetics studies on this mosquito have been important in understanding its invasion pathways and success as a vector of human disease. The Axiom aegypti1 SNP chip was developed from a sample of geographically diverse Ae. aegypti populations to facilitate genomic studies on this species. We evaluate the utility of the Axiom aegypti1 SNP chip for population genetics and compare it with a low-depth shot-gun sequencing approach using mosquitoes from the native (Africa) and invasive range (outside Africa). These analyses indicate that results from the SNP chip are highly reproducible and have a higher sensitivity to capture alternative alleles than a low-coverage whole-genome sequencing approach. Although the SNP chip suffers from ascertainment bias, results from population structure, ancestry, demographic and phylogenetic analyses using the SNP chip were congruent with those derived from low coverage whole genome sequencing, and consistent with previous reports on Africa and outside Africa populations using microsatellites. More importantly, we identified a subset of SNPs that can be reliably used to generate merged databases, opening the door to combined analyses. We conclude that the Axiom aegypti1 SNP chip is a convenient, more accurate, low-cost alternative to low-depth whole genome sequencing for population genetic studies of Ae. aegypti that do not rely on full allelic frequency spectra. Whole genome sequencing and SNP chip data can be easily merged, extending the usefulness of both approaches.

12.
Ecol Evol ; 14(3): e11102, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38524913

RESUMO

Genetics is a fast-moving field, and for conservation practitioners or ecologists, it can be bewildering. The choice of marker used in studies is fundamental; in the literature, preference has recently shifted from microsatellites to single nucleotide polymorphism (SNP) loci. Understanding how marker type affects estimates of population genetic parameters is important in the context of conservation, especially because the accuracy of estimates has a bearing on the actions taken to protect threatened species. We compare parameter estimates between seven microsatellites, 3761 SNP loci, and a random subset of 100 SNPs for the exact same 324 individual swift parrots, Lathamus discolor, and also use 457 additional samples from subsequent years to compare SNP estimates. Both marker types estimated a lower H O than H E. We show that microsatellites and SNPs mainly indicate a lack of spatial genetic structure, except when a priori collection locations were used on the SNP data in a discriminant analysis of principal components (DAPC). The 100-SNP subset gave comparable results to when the full dataset was used. Estimates of effective population size (N e) were comparable between markers when the same individuals were considered, but SNPs had narrower confidence intervals. This is reassuring because conservation assessments that rely on population genetic estimates based on a few microsatellites are unlikely to be nullified by the general shift toward SNPs in the literature. However, estimates between markers and datasets varied considerably when only adult samples were considered; hence, including samples of all age groups is recommended to be used when available. The estimated N e was higher for the full SNP dataset (2010-2019) than the smaller comparison data (2010-2015), which might be a better reflection of the species status. The lower precision of microsatellites may not necessarily be a barrier for most conservation applications; however, SNPs will improve confidence limits, which may be useful for practitioners.

14.
Ecol Evol ; 14(3): e10989, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38500851

RESUMO

Understanding fish movement is critical in determining the spatial scales in which to appropriately manage wild populations. Genetic markers provide a natural tagging approach to assess the degree of gene flow and population connectivity across a species distribution. We investigated the genetic structure of black bream Acanthopagrus butcheri across its entire distribution range in Australia, as well as regional scale gene flow across south-eastern Australia by undertaking a comprehensive analysis of the populations in estuaries across the region. We applied genome-wide sampling of single-nucleotide polymorphism (SNP) markers generated from restriction site-associated DNA sequencing. Genetic structure and potential gene flow was assessed using principal component analyses and admixture analyses (STRUCTURE). Using 33,493 SNPs, we detected broad scale genetic structuring, with limited gene flow among regional clusters (i.e. Western Australia, South Australia and western Victoria; and eastern Victoria, Tasmania and New South Wales). This is likely the result of unsuitable habitats, strong ocean currents (e.g. the Leeuwin Current and the East Australian Current), large water bodies (e.g. Bass Strait) and known biogeographical provinces across the continent. Local-scale genetic structuring was also identified across the south-eastern Australian estuaries sampled, reflecting that the coexistence of both migratory and resident individuals within populations (i.e. partial migration), and the movement of fish into coastal waters, still results in strong philopatry across the region. Instances of movement among estuaries at this spatial scale were primarily found between adjacent estuaries and were likely attributed to lone migrants utilising inshore coastal currents for movement beyond nearby habitats. Targeting SNP markers in A. butcheri at this continental scale highlighted how neither spatial proximity of estuaries nor black bream's ability to move into coastal waters reflects increased gene flow. Overall, our findings highlight the importance of location-specific management.

15.
Ecol Evol ; 14(3): e11178, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38505177

RESUMO

Genetic diversity is a key component of evolution, and unraveling factors that promote genetic differentiation in space and time is a central question in evolutionary biology. One of the most diverse and ecologically important tree genera in tropical forests worldwide is Ficus (Moraceae). It has been suggested that, given the great dispersal capacity of pollinating fig wasps (Chalcidoidea; Agaonidae), the spatial genetic structure, particularly in monoecious fig species, should be weak. However, no studies have addressed the factors that determine the genetic structure of Ficus species in regions of high geological, geographic, and climatic complexity, such as the Mexican Transition Zone. Using nuclear single nucleotide polymorphisms (5311 SNPs) derived from low-coverage whole genomes and 17 populations, we analyzed the population genomics of Ficus pringlei to characterize neutral and adaptive genetic variation and structure and its association with geographic barriers such as the Trans-Mexican Volcanic Belt, environmental heterogeneity, and wind connectivity. From genomic data of 71 individuals, high genetic diversity, and the identification of three genomic lineages were recorded (North, South, and Churumuco). The results suggest that genetic variation is primarily determined by climatic heterogeneity. Ficus pringlei populations from the north and south of the Trans-Mexican Volcanic Belt also exhibited minimal genetic differentiation (F ST = 0.021), indicating that this mountain range may not act as an insurmountable barrier to gene flow. Wind connectivity is also highlighted in structuring putative adaptive genetic variation, underscoring the intricate complexity of the various factors influencing genetic variation in the species. This study provides information on the possible mechanisms underlying the genetic variation of endemic species of the tropical dry forest of Western Mexico, such as F. pringlei.

16.
Front Vet Sci ; 11: 1339321, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487707

RESUMO

Introduction: The development of reproducible tools for the rapid genotyping of thousands of genetic markers (SNPs) has promoted cross border collaboration in the study of sheep genetic diversity on a global scale. Methods: In this study, we collected a comprehensive dataset of 239 African and Eurasian sheep breeds genotyped at 37,638 filtered SNP markers, with the aim of understanding the genetic structure of 22 North African (NA) sheep breeds within a global context. Results and discussion: We revealed asubstantial enrichment of the gene pool between the north and south shores of the Mediterranean Sea, which corroborates the importance of the maritime route in the history of livestock. The genetic structure of North African breeds mirrors the differential composition of genetic backgrounds following the breed history. Indeed, Maghrebin sheep stocks constitute a geographically and historically coherent unit with any breed-level genetic distinctness among them due to considerable gene flow. We detected a broad east-west pattern describing the most important trend in NA fat-tailed populations, exhibited by the genetic closeness of Egyptian and Libyan fat-tailed sheep to Middle Eastern breeds rather than Maghrebin ones. A Bayesian FST scan analysis revealed a set of genes with potentially key adaptive roles in lipid metabolism (BMP2, PDGFD VEGFA, TBX15, and WARS2), coat pigmentation (SOX10, PICK1, PDGFRA, MC1R, and MTIF) and horn morphology RXFP2) in Tunisian sheep. The local ancestry method detected a Merino signature in Tunisian Noire de Thibar sheep near the SULF1gene introgressed by Merino's European breeds. This study will contribute to the general picture of worldwide sheep genetic diversity.

17.
Heliyon ; 10(5): e26720, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38455579

RESUMO

There are two cultivated and weedy types of Perilla crop (TCWTPC), and they are widely distributed and cultivated in East Asia, especially in South Korea and Japan. The objective of this study is to create simple sequence repeat (SSR) markers linked to morphological traits that show differences between accessions of the TCWTPC using recently designed SSR primer sets in Perilla crop. Genetic diversity within 52 accessions of the TCWTPC, gathered from South Korea, was assessed using 28 novel Perilla SSR primer sets. Based on the assessment, a collection of 28 Perilla SSR primer sets were shown to exhibit polymorphism and yielded a total of 142 alleles across the 52 accessions of the TCWTPC. Through inspection of a phylogenetic tree and population structure, the 52 accessions of the TCWTPC were classified into three major groups. Although most accessions of the TCWTPC were relatively clearly distinguished, SSR markers failed to distinguish several accessions belonging to the two weedy types of the Perilla crop. By using an association mapping analysis (AMA) of the 28 Perilla SSR markers and seven morphological characteristics in the 52 TCWTPC accessions, we detected that three of the Perilla SSR markers (KNUPF134, KNUPF137, KNUPF149) were associated with plant and seed characteristics. The novel SSR primer sets developed in Perilla crop should be useful in AMA for assessing genetic diversity and relationships between and within TCWTPC accessions, and this information will be helpful for genetic mapping in breeding programs for Perilla crop.

18.
Genes (Basel) ; 15(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38540410

RESUMO

With a rich breeding history, Nanyang cattle (NY cattle) have undergone extensive natural and artificial selection, resulting in distinctive traits such as high fertility, excellent meat quality, and disease resistance. This makes them an ideal model for studying the mechanisms of environmental adaptability. To assess the population structure and genetic diversity of NY cattle, we performed whole-genome resequencing on 30 individuals. These data were then compared with published whole-genome resequencing data from 432 cattle globally. The results indicate that the genetic structure of NY cattle is significantly different from European commercial breeds and is more similar to North-Central Chinese breeds. Furthermore, among all breeds, NY cattle exhibit the highest genetic diversity and the lowest population inbreeding levels. A genome-wide selection signal analysis of NY cattle and European commercial breeds using Fst, θπ-ratio, and θπ methods revealed significant selection signals in genes associated with reproductive performance and immunity. Our functional annotation analysis suggests that these genes may be responsible for reproduction (MAP2K2, PGR, and GSE1), immune response (NCOA2, HSF1, and PAX5), and olfaction (TAS1R3). We provide a comprehensive overview of sequence variations in the NY cattle genome, revealing insights into the population structure and genetic diversity of NY cattle. Additionally, we identify candidate genes associated with important economic traits, offering valuable references for future conservation and breeding efforts of NY cattle.


Assuntos
Genoma , Humanos , Bovinos/genética , Animais , Genoma/genética , Fenótipo , Sequenciamento Completo do Genoma/métodos , Análise de Sequência de DNA
19.
Genes (Basel) ; 15(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38540421

RESUMO

Cowpea (Vigna unguiculata L. Walp) is an important grain legume crop of the subtropics, particularly in West Africa, where it contributes to the livelihoods of small-scale farmers. Despite being a drought-resilient crop, cowpea production is hampered by insect pests, diseases, parasitic weeds, and various abiotic stresses. Genetic improvement can help overcome these limitations, and exploring diverse cowpea genetic resources is crucial for cowpea breeding. This study evaluated the genetic diversity of 361 cowpea accessions from the USDA core collection for the species using 102 Kompetitive Allele Specific PCR (KASP) single nucleotide polymorphism (SNP) markers. A total of 102 KASP-SNP was validated in the germplasm panel, and 72 showed polymorphism across the germplasm panel. The polymorphism information content (PIC) of all SNPs ranged from 0.1 to 0.37, with an average of 0.29, while the mean observed heterozygosity was 0.52. The population structure revealed three distinct populations that clustered into two major groups after phylogenetic analysis. Analysis of molecular variance (AMOVA) indicated greater genetic variation within populations than among populations. Although cowpea generally has a narrow genetic diversity, the accessions used in this study exhibited considerable variation across geographical regions, sub-species, and improvement status. These results indicated that the selected KASP genotyping assay can provide robust and accurate genotyping data for application in the selection and management of cowpea germplasm in breeding programs and genebanks.


Assuntos
Vigna , Estados Unidos , Vigna/genética , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Alelos , United States Department of Agriculture , Melhoramento Vegetal , Reação em Cadeia da Polimerase
20.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542215

RESUMO

The market value of tea is largely dependent on the tea species and cultivar. Therefore, it is important to develop efficient molecular markers covering the entire tea genome that can be used for the identification of tea varieties, marker-assisted breeding, and mapping important quantitative trait loci for beneficial traits. In this study, genome-wide molecular markers based on intron length polymorphism (ILP) were developed for tea trees. A total of 479, 1393, and 1342 tea ILP markers were identified using the PCR method in silico from the 'Shuchazao' scaffold genome, the chromosome-level genome of 'Longjing 43', and the ancient tea DASZ chromosome-level genome, respectively. A total of 230 tea ILP markers were used to amplify six tea tree species. Among these, 213 pairs of primers successfully characterize products in all six species, with 112 primer pairs exhibiting polymorphism. The polymorphism rate of primer pairs increased with the improvement in reference genome assembly quality level. The cross-species transferability analysis of 35 primer pairs of tea ILP markers showed an average amplification rate of 85.17% through 11 species in 6 families, with high transferability in Camellia reticulata and tobacco. We also used 40 pairs of tea ILP primers to evaluate the genetic diversity and population structure of C. tetracocca with 176 plants from Puan County, Guizhou Province, China. These genome-wide markers will be a valuable resource for genetic diversity analysis, marker-assisted breeding, and variety identification in tea, providing important information for the tea industry.


Assuntos
Camellia sinensis , Humanos , Íntrons/genética , Camellia sinensis/genética , Marcadores Genéticos , Genoma de Planta , Melhoramento Vegetal , Chá
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...